Устойчивость “в малом” и “ в большом”. Связь критерия Попова с методами Ляпунова.

Публикации на разные темы ("без рубрики").

NEW РАЗНОЕ

Все свежие публикации

Меню для авторов

РАЗНОЕ: экспорт материалов
Скачать бесплатно! Научная работа на тему   Устойчивость “в малом” и “ в большом”. Связь критерия Попова с методами Ляпунова. . Аудитория: ученые, педагоги, деятели науки, работники образования, студенты (18-50). Minsk, Belarus. Research paper. Agreement.

Полезные ссылки

BIBLIOTEKA.BY Беларусь глазами птиц HIT.BY! Звёздная жизнь KAHANNE.COM Мы в Инстаграме
Система Orphus

Публикатор:
Опубликовано в библиотеке: 2010-06-04
Источник: http://library.by

 

 

Устойчивость “в малом” и “ в большом”. Связь критерия Попова с методами Ляпунова.


Пусть линейная система устойчива в секторе (0, К)-см рис. 5.9; начальная часть нелинейной характеристики, соответствующая -Х 2
С помощью критерия Попова легко можно пояснить, когда применим первый метод Ляпунова. Заменим нелинейную характеристику в точке равновесия касательной. Если линейная система устойчива (а не находится на границе устойчивости), то небольшой подъем луча 0К в положение 0К 1 не нарушит устойчивости, то при этом начальная часть нелинейной характеристики попадает внутрь сектора (0, К 1 ), и равновесие нелинейной системы будет устойчивым в малом.

Если же мы имеем критический случай, то касательная является границей сектора, внутри которого линейная система устойчива, и мы не можем судить об устойчивости равновесия нелинейной системы.



Функция Ляпунова может быт построена различными способами для одной и той же системы. Для каждой такой частной функции Ляпунова можно построить свою область устойчивости в пространстве параметров, но каждая такая область не будет истинной областью устойчивости, поскольку второй метод Ляпунова дает лишь достаточное условие устойчивости.

Р. Калман показал, что область устойчивости, даваемая критерием Попова, будет огибающей для всех областей устойчивости, определяемых функциями Ляпунова вида “квадратичная форма плюс нелинейность”, т.е. будет шире и ближе к истинной области устойчивости, чем любая из областей устойчивости, определяемая по функции Ляпунова заданной формы.

Большим преимуществом метода Попова является то, что он без особых затруднений распространяется на системы с запаздыванием и распределенными параметрами, а также на некоторые классы импульсных систем управления.

Рассмотренные критерии - квадратичный, вытекающий и него круговой и критерий Попова - различаются степенью подробности учета специфических особенностей нелинейных характеристик, что отражается на ширине области устойчивости, даваемой тем или иным критерием, т.е. лучшим критерием является тот, который дает более широкую область устойчивости.

Если сравнивать круговой критерий с методом Попова, то первый дает более узкую область устойчивости, если исследуется класс стационарных нелинейностей, но зато охватывает более широкий класс нелинейностей.


 




















Комментируем публикацию:   Устойчивость “в малом” и “ в большом”. Связь критерия Попова с методами Ляпунова.


Публикатор (): ю.н.г. Источник: http://library.by

Искать похожие?

LIBRARY.BY+ЛибмонстрЯндексGoogle

Скачать мультимедию?

подняться наверх ↑

Новые поступления

Выбор редактора LIBRARY.BY:

Популярные материалы:

подняться наверх ↑

ДАЛЕЕ выбор читателей

Загрузка...
подняться наверх ↑

ОБРАТНО В РУБРИКУ

РАЗНОЕ НА LIBRARY.BY


Уважаемый читатель! Подписывайтесь на LIBRARY.BY на Ютубе, в VK, в FB, Одноклассниках и Инстаграме чтобы быстро узнавать о лучших публикациях и важнейших событиях дня.